(U+6)^2=2u^2+16u+15

Simple and best practice solution for (U+6)^2=2u^2+16u+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (U+6)^2=2u^2+16u+15 equation:



(+6)^2=2U^2+16U+15
We move all terms to the left:
(+6)^2-(2U^2+16U+15)=0
We add all the numbers together, and all the variables
-(2U^2+16U+15)+6^2=0
We add all the numbers together, and all the variables
-(2U^2+16U+15)+36=0
We get rid of parentheses
-2U^2-16U-15+36=0
We add all the numbers together, and all the variables
-2U^2-16U+21=0
a = -2; b = -16; c = +21;
Δ = b2-4ac
Δ = -162-4·(-2)·21
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$U_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$U_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$
$U_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{106}}{2*-2}=\frac{16-2\sqrt{106}}{-4} $
$U_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{106}}{2*-2}=\frac{16+2\sqrt{106}}{-4} $

See similar equations:

| -2p-5(2+2p)=6(p-4)-2 | | X/2+x/6=3/2 | | X=45x=-45 | | 8v+24=-2(v-2) | | 5s-2=13 | | 5y-4y-1=2y-1 | | F=5(x-65)+50​ | | 9801/x=27 | | 5x-0.5(4-3X)=1.5-(2X+3) | | M^4-m^2+1=0 | | 353.92/e=56 | | 37.1/a=5.3 | | 6d=0.466 | | 4.41/c=0.63 | | 4n+22=18 | | 16x+6x+20-10=46 | | H(t)=-16t^2+40t+160 | | 3(2y+4)=4(3y-8) | | H(t)=-16^2+40t+160 | | 4k+6=2k+18 | | F=1,8c+32 | | w/16+5/6=1 | | 2x(15+2x)=4 | | 12x-4=-3x-58 | | 32x5-3=1 | | 2*3^x+7=25 | | 12a=30 | | 3(x+6)-7=17 | | 24a*23=a+12 | | |2y+9|-3=0 | | 4^x+1+2^x+3=320 | | 0.4(20-10x)=14x-28 |

Equations solver categories